
Finite Size Effects in Two Dimensional Turbulence

The term turbulence describes the state of spatio-
temporal disorder characteristic of energetic fluid
flows. Such flows occur in a wide variety of sit-
uations and play an essential role in many differ-
ent physical and industrial problems. Atmospheric
science, aeronautics, oceanography and astrophysics
provide obvious examples. Turbulence differs from
chaos in that chaotic systems are typically low di-
mensional whereas turbulence essentially involves
the interaction of a large number of degrees of free-
dom. Conservation laws play an essential role in our
understanding of the physics of turbulence. Since
the Navier–Stokes equations governing fluid flows
contain a dissipative viscous term, the notion of a
conserved quantity requires explanation. In this con-
text, a conserved quantity is something which is con-
served by the nonlinear terms in the Navier–Stokes
equation. Kinetic energy,E = 1

2 |~u|
2, is an example,

where~u(~x, t) is the fluid velocity. For three dimen-
sional turbulence it is the only important one for most
applications.

From a statistical physics perspective, turbulence
can be profitably thought of in terms of the trans-
port of conserved densities between different scales
of motion. The scales at which conserved quanti-
ties are dissipated are typically very different from
the scales at which turbulence is forced. Viscous dis-
sipation only becomes efficient at very small scales
while friction is most efficient at large scales. Non-
linear interactions serve to transport conserved quan-
tities from the source scale to the dissipation scale,
a process referred to as a cascade. In three dimen-
sional turbulence energy cascades from large scales
to small where it is dissipated by viscosity. This al-
lows the system to reach a stationary state having en-
ergy injection balanced by energy dissipation. There
is no detailed balance. Rather there exists a range of
scales, referred to as an inertial range, between the
forcing scale and the dissipation scale through which
a flux of energy flows.

The two-dimensional Navier–Stokes equations
conserve additional densities, foremost among which
is the enstrophy,H = |∇×~u|2. Additional conser-
vation laws modify the physics considerably. Most
importantly, in two dimensions, the nonlinear inter-

actions act in such a way that energy is transferred
from the forcing scale to larger scales where it is
ultimately dissipated by external friction while the
second conserved density,H, cascades to smaller
scales where it is removed by viscosity. The trans-
fer of energy to larger scales is called an inverse cas-
cade while the enstrophy cascade to smaller scales is
called a direct cascade. Assuming statistical isotropy
of the turbulence, it is possible to make simple di-
mensional arguments for the energy spectrum,E(k),
of the stationary state where the fluxes of energy
and enstrophy carried through the respective inertial
ranges, usually denoted byε andQ, are constant. For
the direct cascade one findsE(k) ∼ Q

2
3 k−3 and for

the inverse cascade,E(k)∼ ε 2
3 k−

5
3 . For this research

we are primarily interested in the inverse cascade. By
transporting energy from incoherent small scale forc-
ing to larger scales, inverse cascades facilitate the
formation of large scale coherent structures, in this
case vortices. The generation of large vortices in two
dimensional turbulence whose lifetime is often many
orders of magnitude greater than the coherence time
of the forcing is good example of the emergence of
“order from chaos”.

In most studies of the two–dimensional inverse
cascade, the scale of the largest vortices in the sys-
tem is limited by the external friction. As a vortex
grows larger, the drag on the fluid layer increases un-
til eventually it is sufficient to balance the energy flux
carried by the inverse cascade. At this point the vor-
tex cannot grow any further. If, however, the exter-
nal drag is decreased sufficiently or removed entirely
(something which can be easily done in numerical
simulations) then the vortices continue to grow un-
til eventually the inverse cascade reaches the largest
scale of the system. This is the box size in a numer-
ical simulation or the size of the container if such a
scenario could be realised in a laboratory. In this sit-
uation, the inverse cascade cannot proceed any fur-
ther resulting in what we call a blocked inverse cas-
cade. We have performed a series of numerical ex-
periments to investigate inverse cascades blocked by
finite size effects. The main conclusion of our work
so far is that finite size effects can provide a mech-
anism for strongly enhancing the stability and co-
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herence of the large scale structures present in two-
dimensional turbulence. In fact turbulence can be
entirely suppressed at the largest scales resulting in
a large scale flow which is smooth and effectively
deterministic.
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Figure 1:E(k) for different dissipation strengths.

Figure 1 shows the energy spectrum,E(k), for var-
ious values of the large scale dissipation. For strong
dissipation, it scales likek−

5
3 as expected from stan-

dard theory. As dissipation is decreased, the inverse
cascade reaches the size of the system and is blocked.
The spectrum then crosses over tok−3, characteris-
tic of a smooth large scale flow. The corresponding
vorticity field is shown in figure 2. It clearly shows
how the blocked inverse cascade organises itself to
produce a very intense vortex dipole.

Once the large scale vortex dipole emerges it is
very stable. If the dissipation is entirely absent then
the amplitude of the vortices constituting the pair
continues to grow indefinitely at a rate proportional
to

√
t. This is as one would expect giventhat the total

enstropy of the system grows linearly in time (con-
stant injection). If there is some small amount of
dissipation present, then the growth eventually satu-
rates. Small scale fluctuations produced by the forc-
ing remain in the system. However as the amplitude
of the large scale flow grows, it comes to completely
dominate the fluctuating part so that at large scales,
the flow no longer appears turbulent. In this sense,
blocked inverse cascades tend to “suppress” turbu-
lence. Nevertheless, the effect of the small scale fluc-
tuations is felt at large scales through the fluctuations
of the relative positions and velocities of the two vor-
tices in the pair. The separation of the two vortices
remains around half the scale of the box but fluctu-

Figure 2: Vortex dipole resulting from a blocked in-
verse cascade.

ates significantly. Furthermore, the pair exhibit a uni-
form mutual translation whose direction and magni-
tude also fluctuate.

From the numerical measurements it is clear that
the structure of the vortices is such that the vortic-
ity seems to decrease as a power law as one moves
away from the centre of the vortex. The exponent
of the decay is approximately 1.25, a number which
currently lacks a convincing theoretical explanation.
This r−1.25 radial vorticity profile is very robust. It
persists in time as the vortex dipole grows in ampli-
tude. Furthermore it remains if the driving is turned
off allowing all small scale fluctuations to decay.

It is an interesting question to ask how univer-
sal is the behaviour described here. It is important
to remember that all the physics of blocked inverse
cascades and the corresponding coherent large scale
flow comes from the finite size effect and presumably
depends on the boundary conditions which constrain
the system. The vortices which emerge from non-
slip boundary conditions in a box will probably dif-
fer in detail from those emerging from the periodic
boundaries used in our simulations to date. Even so,
we expect that the phenomenon of finite size effects
leading to the generation of coherent, highly stable
large scale structures is generic.
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